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to the construction of a comprehensive set of asymptotic formulae relating to the
Mathieu equation y” + (A +2A2 cos 2z) y = 0 with real parameters. These comprise
formulae both (a) for the auxiliary parameters and (4), in terms of exponential and
circular functions, for the fundamental solution, a function of a complex variable,
and the various pairs of real-variable base-functions, all introduced in part II. With
the aid of these, together with connection formulae also obtained in part II, approxi-
mations can readily be obtained for Mathieu functions of various types, including in
particular periodic functions.
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116 W. BARRETT

Formulae for solutions are applicable on the half-strip {z:0 < Re z < i,
Im z > 0}, with the transition point of the differential equation which lies on its
frontier removed, or in the case of real-variable solutions of the ordinary or modified
equation, on the interval [0, {n] or [0, co] respectively, with the same qualification
as for the half-strip when this is relevant. The formulae cover the full range of the
parameters subject to A # + 242

The O-terms providing error estimates are uniformly valid on any subdomain of
the independent variable and parameters on which they remain bounded.

1. THE LIOUVILLE TRANSFORMATION

The various formulae to be obtained, which are collected together in §6 below, are all derived
by the method of part III, with the use of the basic equation III, (1.6). They include formulae
for connection coefficients as well as formulae for solutions. The latter are all valid as follows:

(i) complex-variable solutions — on the fundamental region 2 (see (1.11) below);

(ii) real-variable solutions, ordinary equation — on [0, n];

(iii) real-variable solutions, modified equation —on [0, o],
or in each case on a specified subdomain or subinterval. Formulae can be obtained in other
domains or intervals by means of connection formulae or period relations, although in some
cases the full domain of validity of the formulae is larger than that specified above.

The Mathieu equation written in the complex-variable form II, (1.4),

y"+ (A+2h2 cos 2z) y = O, (1.1)
has the form III, (1.1), with u replaced by 4 and
Sf(z) = X' [h*+2 cos 2z, g(z) = A-N,

A’/h? and A — A’ being treated as parameters additional to u = .
The redundant quantity A’ is required in connection with approximations in terms of
parabolic cylinder functions. It is introduced here so that certain formulae will be available

for application in part V, but the natural choice if L.-G. approximations only are required is
A=A

Let A(z) = —}h23(A" + 2h2 cos 22) (1.2)
and define the new independent variable £ with derivative
d¢/dz = 2[4(2)]t (1.3)
The quantity A’ may depend on % as well as on A; it is required to satisfy uniformly
both A=A = 0(1), (1.4a)
and A=A = (h2/X) O(1). (1.40)

Throughout this paper, the expression O(1) is used in its broadest sense to represent a
bounded function of all relevant quantities over some specified domain; in (1.4a, b) these are
h, A’ subject only to & # 0. In the rest of this section, but only here, the parameters are re-
garded as arbitrary but fixed, and O(1) is bounded as a function of z, only under this condition;
subsequently, it is bounded as a function of the parameters also.

To determine a suitable integral of (1.3), observe that on the region D = {z:Im z > M},
for some M > 0 depending on the parameters, d/dz has two disjoint analytic branches; a
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specific branch is selected by assigning the value arg 4(z) = 0 when z€ D and Re z = in,
and by defining the square root accordingly. Then on D,

d§/dz = 2sin z+(sin z)~1 O(1) = ie*+¢€i* O(1),
and the indefinite integral can be determined so that
£ =—-2cos z+0(1) = —e1240(1) (1.5a)
uniformly on D as Im z -+ o0} also,
A(z) ~ sin? z ~ } exp[—2i(z—4n)] (1.56)
under the same conditions
This branch of £ is clearly a periodic function of z, with period 2r; the map z — £ shares

with the map z - —2 cos z the following properties, the branches of arg £ and of arg cos z
being appropriately chosen:
(i) forzeD,neZ,Rez = }nn = arg § = (1—4n) n; (1.6a)
(ii) {z:0 < Re z < n,Im z > M} is mapped one-to-one info {£:m > arg £ > 0}; (1.60)
(iii) the transformation z - 2 = z+nn (n € Z) induces the transformations
£ — —nin
£ &= Lem, } (1.6¢)
A(z) > A(2) = A(z) e2nir,

the determination of arg 4(z) being significant in (1.3) and in (1.7a) below.
The image in the £-plane of the region D is the exterior of a certain simple closed curve,
symmetric about both axes.
The corresponding Liouville transformation applied to the Mathieu equation (1.1) gives
the differential equation
d%/dE% = (h2+ Y (2)} v, (1.7)

with independent variable £, dependent variable v given by
y = F(z)v where F(z) = [4(2)]7, (1.7q)

A=A 1 cos2z 5 sin22z

and ¢(z) given by V(2) = (2 TS ADT 64 AT

(1.76)

The form (1.7) with the formulae (1.74, 4) remains valid on all branches of the many-valued
function obtained by analytic continuation of £ from the branch on D defined above, F(z)
being continued concurrently. In this section, however, consideration will be restricted to the
original branch on D.

For this branch, Im z - 00 <> |£| - o0, and it follows readily from (1.54, 4) and (1.75) that

¥(2) = 0(£7%) (1.8)

on D, so that on any path,

var f ¥ (2) d€ = var {£-1} O(1). (1.84)

Now if [Re z| < §n—¢& (8 > 0) and Im z is sufficiently large there is a £-progressive path
originating from oo ei* in the £-plane - that is from oo i in the z-plane — and terminating at
z, which satisfies the conditions of lemma 1 of part III, §5 and its corollary. Hence by the
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118 W. BARRETT

theory of the L.—G. method as outlined in part III, there is a unique solution of (1.7) of the
form
v = ceh (1+79),

where ¢ is an arbitrary complex constant and

1l < exp it var [ () dg}— 1 = =tgt0()

uniformly as £ - co. Now by (1.6), arg F(z) = —}in when ze D and Re z = 0; thus a sol-
ution y,(z) of (1.1) which is real and positive for sufficiently large Im z and which is recessive
as z > o01 is obtained by setting ¢ = e#!®, when with the aid of (1.7a) and (1.54, b),

y1(2) ~ et"F(z) et ~ (cos z)—% e—2h cosz (1.9)

uniformly on |Re z| < §n—¢&(8 > 0) as Im z — co, in agreement with II, (3.1). From (1.64, c)
it follows that for n € Z,
yalz—nm) ~ EA-BF(2) exp [(— 1)w hE] (1.10)

uniformly on |Re z—nn| < §n— & as Im z — co; in particular, with n = 1, this gives
y1(z—m) ~ —i(cos z)~% e2hcosz

in agreement with II (8.2). It must be emphasized that in these formulae, uniformity is with
respect to z only and does not extend to the parameters.
The next step is to extend § by direct analytic continuation into the half-strip

2 ={z2:0<Rez< in,Imz > 0} (1.11)

which is a fundamental region for the symmetry group of the differential equation, this group
being generated by the three maps z > z+n, z—> — z, z—z. On 2 the map z — £ is one-to-one,
taking the forms illustrated in figures 3—5 (§6) for different parameter ranges.

It suffices to obtain estimates for the variation of the error control function f ¥ (z) d§ on
suitable paths in £, for such estimates are applicable by symmetry to paths in any congruent
half-strip, and a path not contained in a single half-strip can be decomposed into subarcs that
are. It is necessary to distinguish several parameter ranges; all estimates obtained in the course
of the calculations are uniform on the relevant range.

2. THE VARIATION OF THE E.C.F. ON ARBITRARY PATHS
IN £2: A< —2h2
In this range, which requires subdivision, the Mathieu equation has one transition point in
the closed region 2, on its frontier at z = z, = ia, wherea > Oisdefined by A’ + 24% cosh 2a = 0;
let £, denote the corresponding value of £.

(a) The case X' < —4h2
Estimates are needed for £ — &, and for its reciprocal in terms of z; it will be shown that for
z € £ and uniformly with respect to the parameters in the specified range,

(sinh 2a)¥1 [4(z)]#2 if |4(2)| < }sinh%a

2.1
[4(2)]= if |4(2)| > }sinh?a and Im (z—z) > —¢, 21)

[E—E]8 = O(1) {
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MATHIEU FUNCTIONS OF GENERAL ORDER. IV 119

where ¢ is any positive constant. The reciprocal nature of the estimates with opposite signs will
be noticed, and the estimates on the two subdomains are consistent on the common frontier,
though the O-factors are not continuous there. If a < ¢, the union of the two subregions of
defined by the inequalities in (2.1) is the complete region £.

To establish this estimate, let ¢ = e~¥e~¢; then ¢ = 1 at 2z, and the region £ maps one-to-
one onto the region {f: —n < arg¢ < 0, |¢{| > e~¢}. Also,

(i) 4(z) = fe*(1-2) (1 —eta),

and since e~2¢ < k£ < 1, where £ is a constant,

[4(2)]F = [e**(1—)]+ O(1) (2.2)
on 2; also (i) §-§ = —e“fl (1 —t-2)% (1 —eta-2)} dy, (2.2a)
where the square roots have their principal values.

Now define  f(f) = — fl (1=rhdr = e (1-csort) bk
Then () — (E—Ey) = L [(1 = c-tor-2)+ _ 1] dE. (2.3)

It is easily verified that on £,
[(1—e-ta=2)~F 1| < ky < 1,

and also that the image of £ in the £-plane is a star domain with vertex £, Thus the inte-
gration can be made along paths on which arg (£ — &) is constant, whence it follows that

. L. lesf (t) = (E—&o)| < k&~ &5 (2.4)
since £, < 1, this gives on £:
[elf ()] = [£—&]+ 0(1). (2.40)
Now by explicit integration it can be shown that, if —{n < arg? < 0,
-1t as -1,
S@) ~{ -t as t-—>o00, (2.5)
Int as ¢—0;

since f(¢) is analytic and without zeros, except at £ = 0 and ¢ = 1, it follows from the first
two of (2.5) that

01 = 00 x |

(12—1)#% if ¢and # are bounded,

] v (2.5q)
#1 if (12—1)~1 and ¢! are bounded.

It is easily seen that the alternative conditions in (2.54) are satisfied uniformly on the respective
subregions of 2 specified in (2.1); since (sinh a)*! = e+*0(1), the formula (2.1) can now be
deduced from (2.2), (2.4a) and (2.54).
By writing (1.75) in the form
W(z) = 1A ~A+1 3 cosh2a 5 sinh®2q
4 A(z2) 16 [4(2)]* 64 [4(2)]®’

(2.6)

it now follows from (2.1) that, uniformly on each of the two subregions, and hence also on
their union, namely the set {z € 2: |¢| > e},

¥(z) = [E-&]720(1), (2.7)
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120 W. BARRETT

whence, uniformly for paths in the same region,
varf Y¥(z) d€ = var [§—§]~* O(1). (2.7a)
Consideration of the remaining part of 2 is deferred until subsection (¢) below.

(b) The case —4h® < A’ < —2h?
The formula corresponding to (2.1) is
(sinh 22)¥1 [A(2)]= if |4(2)] <
[£—&]+ = O(1) x{[4(2)]** if }sinh?a < |4(2)] <
[4(z)]t* otherwise.

3 sinh%a
1 (2.8)

If A’ # —2h2 let ¢ = sin §z/sinh }a; then ¢ = 1 when z = z, and £ is mapped one-to-one
into the first quadrant in the t-plane. Also,

A(z) = 4sinh? }a (£2+ 1) (cos? 1z +sinh? }a) (2.9)
and £—£, = 8sinh? }a J; (224 1)¥ (1 +sec? }z sinh? }a)? dt. (2.10)
Now define fi) =2 L (24 1)} ds,
so that 4 sinh? La f(t) = J; (1 +sec? 1z sinh? }a)—% d&.

Then by an argument similar to that of §2(a),
[£— &)+ = [sinh? Ja f(1)]# O(1) (2.11)
on £, uniformly with respect to the parameters. Next, if 0 < arg ¢ < =, then
L (2+ 1) as t—i,
f(t) ~ {3

2+1 as t-—>o0;
since f () is analytic and without zeros in this region, except at ¢ = i, it follows that

(2+1)+% if 241 is bounded,

. . (2.12)
(224 1)+ if [#2+1]-'is bounded.

01 = 0(1)x{

Again, if z e Q and 4(z), or equivalently sin z, is bounded, cos? }z +sinh? }a is bounded
and bounded away from zero, whence from (2.9),
[4(2)]** = [sinh? }a (£2+1)]¥ O(1).
Similarly, but less directly, it is found that if z € 2 and 4(z) is bounded away from zero, then
[4(z)]#* = [sinh? }a (£2+1)]£1 O(1).

The formula (2.8) now follows from (2.12) and the fact that (cosh }a)*! is bounded.

By means of (2.6) and (2.8) it can be shown finally that the estimates (2.7) and (2.7a),
obtained on a limited region in case (a), for ¥(z) and the variation of the e.c.f., are now valid
on the whole of 2. The analysis requires modification if A’ = —2hA2, when a = 0, but the
same conclusion holds.


http://rsta.royalsocietypublishing.org/

o \

p &

JA

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/A

o \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MATHIEU FUNCTIONS OF GENERAL ORDER. IV 121

(¢) The combined range ' < — 2h?

The next objective is to establish the validity of the following formulae when z€Q and
A’ < —2h? subject to the condition (1.45).

(i) On the subdomain R ={zeQ:Im (§-&) > —¢,},

where ¢, > 0, depends on « and is defined below (2.16),

¥(z) = [E-£]20(1), (2.13)
whence on any path in R,
varfzﬁ(z) df = var ¥,(z) 0(1), (2.13a)
where Yi(z) = [E—&] ™

If —4h < X' < —2k2, R, is the whole of ©.

N'=—20h"
R
9 1 X'=—3h*
_-.‘.::.—.—._-:';_-.—;_:.‘_ __________ R,=0
R, R, R
Ry ™, ;o
0 im 0 i
z-plane
Ficure 1. Subdomains of 2; their frontiers are identified thus: — - —, Fr R;; «+, Fr Ry; - - -, Fr Ry;
, Fr R,.
(ii) On the subdomain R, = {z€ Q: |sin? z| < }|4(0)|},
¥ (2) df/dz = e#[4(0)]- 0(1), (2.14)
whence on any path in R,,
varf:ﬁ(z) df = var ¥,(z) O(1) (2.14q)
where Y,(z) = (e~%—1) [4(0)]-%
(iii) On the subdomain R; = {z € Q: |cos? z| < §|A(3n)|},
Y (2) d§/dz = e~2=[A(3n)]F O(1), (2.15)
whence on any path in Ry,
varf Y(2) d§ = var Py(z) O(1), (2.154)
where Vy(z) = (e~ +1) [4(3n)]-E
In (i) above, ¢g =sup{—Im (§—-£):z€ 2, z¢ R, n R,}. (2.16)

The above subdomains of 2 are defined in such a way that R, U R, = R, U R; = Q; they are
illustrated in figure 1, together with R, = {z € 2: |4(2)| < % sinh? a} (see (2.1), (2.8)).
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122 W. BARRETT

Since R, = Qif —4h2 < X' < —2k2% (2.13) follows in this case from (2.7). If on the other
hand A’ < — 442, then |¢|~!, where ¢ is defined as in §2(a), is uniformly bounded on R;. For
since ¢, = inf {|#|: z € R,} is evidently a continuous function of a for a > 0, it suffices to show
that its reciprocal is bounded for all sufficiently large values of a; this is tedious rather than
difficult and may be done by using the fact that when a is large, £, in (2.4) may be chosen to

be small. The details are omitted. On substituting ¢ = In sup {|{,|~*} in the formula for the
a>0

domain of validity of (2.7), it follows that this last, and hence also (2.13), is valid on R,.

If z € R,, then
[A(2)]# = (sinh a)#2 O(1) = [§+}X /2] O(1), (2.17)

and (2.14) follows readily from (1.74) in its original form, subject to the condition (1.45);
the indefinite integral in (2.14a) is then chosen to vanish at z = 0, to provide an effective
formula for estimating the variation of the e.c.f. along paths issuing from z = 0. This establishes
part (ii) of the set of formulae; part (iii) is proved similarly.

The following lemma, valid for the parameter range under consideration, will be needed
later.

Lemma 1. If z, z* € R,, and if £* is the value of £ at z*, then, uniformly with respect to z, z* and
the parameters,
[4(z)]"* O(1) if A(0) is bounded,

(i) (é*—éo)*:{[A(z)]_g, 0(1) if [4(0)]' is bounded,;

(2.18)

(i) Wo(z) = [£*—£] O(1). (2.19)
A similar result holds with Ry in place of R,.

Proof. It follows immediately from (2.1) or (2.8), according to the value of A’/A2, and from
the definition of R, that

(£% £ [4(z*)]-* O(1) if A(z*) is bounded,
v {[A(z*)]—% 0(1) if [A(z*)] is bounded.
The use of (2.17) then establishes (2.18), since 4(0) = —sinh? a.

Next, it is easy to see with the aid of (2.17) that

[4(0)]1 O(1) if A(0) is bounded,

Y,(z) = 2i e sin z[4(0)]} = {[A(O)]*i* 0(1) if [4(0)]7' is bounded,

for on R,, e is bounded if 4(0) = sinh? a is bounded, and is equal to [4(0)]* O(1) if [4(0)]-2
is bounded. Again by using (2.17), followed by an application of (2.1) or (2.8),
( ([A(z*)]‘1 O(1) if A(z*) is bounded,
+(2) = [4(z*)]-* 0(1) if [4(z*)]7' is bounded,
= [£*— &)™ 0(1)

as required. The proof for R,;, with ¥,, A(4n) in place of ¥,, 4(0), is similar.
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3. THE VARIATION OF THE E.C.F. ON SPECIFIED PATHS; A’ < —2j?

It is not essentially difficult, but is by no means trivial, to show that there exist paths of the
following classes, satisfying the conditions of lemma 1 of part III, §5 and also of its corollary,
the point z* in the latter being the terminal point of the path unless otherwise specified. This
can be done by using paths on which either Re £ or Im £ is constant, or composed of two
subarcs with this property; specimen paths of classes A and C are illustrated in figure 2. In
the following description, R} (j = 1, 2) is the union of R; and its reflexion in the imaginary
axis.

— %2 |
0 n 0 i
z-plane

Ficure 2. Progressive paths of types A and C (—»—). -+, arg (§—§,) = — }n;
-- - arg (E=§) = im.

Class A: paths originating from infinity and terminating in £, comprising an arc in Rf,
followed by an arc in R} if the terminal point is not in R;; in the latter case, z* is the common
end-point of these two arcs. This class is to comprise three subclasses:

A 1, + &-progressive paths with Im § = const. on aninitial segment, lying in and terminating
at an arbitrary point of the region {z € 2: arg (§—§&,) > —in};

A 2, — £-progressive paths with Re z = }n on an initial segment, lying in and terminating
at an arbitrary point of 2;

A 3, + g-progressive paths with Re z = —n on an initial segment and terminating at an
arbitrary point of {z € Q: arg (§—§,) < —}n}; the path must enter £2 across the segment [0, z,)
and £ is defined by continuation across this segment.

The two subregions of 2 given are complementary apart from having a common frontier,
the second being empty if A’ = — 242

On paths y of any of these subclasses, with terminal point z € £, the following holds.

ForMmuLAa A
sinh 2a[4(z)]-} if |4(2)| < } sinh 2%,

1
2
varftﬁ(z) df = O(1) x{[4(z)]7* if }sinh%a < |4(2)] < 1, (3.1)
Y [4(2)]-} if |4(z)|] > max {1, } sinh? a}.
The second case only arises if —44%2 < A’ < — 242 The various subdomains of £2 determined
by the inequalities are illustrated in figure 1.

13 Vol. go1. A
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If z € R,, this formula follows immediately from (2.1) or (2.8), (2.134) and the corollary to
lemma 1 of part III. If z ¢ R, then A’ < —4A% and by means of lemma 1 it can be shown
that the estimate [4(z)*]-* O(1) applies to both subarcs and therefore to the whole, and that
this estimate remains valid if z is substituted for z*. Some restriction on arg (£ — £,) in defining
domains of accessibility by paths of classes A 1 and A 3 is required in order that the condition
of the corollary to lemma 1 of part III may be satisfied and hence that the variation of the
e.c.f. may be expressed as a function of the terminal point; the common bound —}rn could
however be replaced by —in+ 8 and — & (¢ > 0) for classes A 1 and A 3 respectively, giving
some overlap of the domains.

Next, there are two paths with terminal point at infinity:

B 1, a path of class A 2 terminating at z = 0, together with its reflexion in the imaginary
axis, the former described in the reverse sense, so that the complete path originates from
—3mn+001i, terminates at 3w +o001i and is + -progressive;

B 2, a path of class A 2 terminating at z = =, together with its reflexion in the real axis,
the former described in the reverse sense; both Re z and Re £ are constant on this path,
which originates from in —coi and terminates at 3w +o01.

The variation along either of these paths is twice that along the first part of class A 2. Hence
by formula A the following holds.

ForMULA B Bi J"ﬁ( ) dg = 0(1) {(sinh a)~? if sinh?a < } 59
RMULA s var = x ‘
Eri A (sinh a)-! if sinh?a > } (3.24)
B2: varf ;ﬁ(z) d¢ = (COSh a)—l 0(1) (3.21))
B2

Lastly, there are two classes with finite initial point.

Class C 1: paths originating from z = 0, + &-progressive and terminating at an arbitrary point
of {ze Q:arg (£—§,) < $n—0} (8 > 0). If the terminal point is in Ry, the path is to lie in R,.
Otherwise it is to consist of two subarcs, the first in R, and the second not meeting R, except
at its initial point.

Class C 2: pathsoriginatingfrom z = }n, — &-progressiveand terminating at an arbitrary point
of {ze Q:arg (§—§,) < n— 8} (6 > 0). The description is similar, but with R, in place of R,.

By similar means to those employed for class A, the following can be established.

Formura C
(i) If yisof class C 1,

J(2) dE = 0(1) {(e—2iz—1) [4(0)]% if zeR, (3.34)

= 3a
Virf (2) ) cosh a (sinh @)% if |4(z)| > 4sinh?a and z¢R,,

and satisfies (3.1) otherwise.
(i) Ify is of class C 2,
(e=2241) [A(3n)]~2 if zeR,,
d¢ = 0(1 3.3b
Virfwz) £ ()X{(cosha)—l £ [A(z)] > hooshta and zg¢R, 0

and satisfies (3.1) otherwise.
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4. ASYMPTOTIC FORMULAE FOR MATHIEU FUNCTIONS; A" < — 242

It is convenient to introduce, for the purpose of constructing continuations of £ into contig-
uous fundamental regions, the notation £(z) for the value of £ on the branch already defined,
continued into the region {z: 0 < Re z < =, Im z > 0}. Two real auxiliary quantities are also
required, in addition to the parameters (x, @) ; these are

E =1Im¢g(0), E, =—§&, (4.1)
By referring to figure 3, it is seen that
E = i(—£0) < 0, E, = £&m)—£(0) > 0. (4.10)

These quantities are complete elliptic integrals of the second kind; expressions in terms of z
and of standard elliptic integrals, as well as approximate formulae derived from known ex-
pansions, appear in §6.1.

The remainders of the formulae of §6 below are expressed in the form III, (1.55), the vari-
ation of the e.c.f. being estimated by means of the formulae of §3 above; for remarks on the
validity of these remainder terms, see part I, §2(4). For formulae in terms of e+?, the fact
that the absolute value of the exponential function is taken as majorant results in a slight
simplification of form; the same is true where the basic function is a hyperbolic function
of a real variable, but where it is a circular function of a real variable, the appropriate majorant
is the unit constant function. The formulae are all valid on 2, on a specified subdomain of 2 or
on a specified interval on its frontier; in some cases they are in fact valid on a more extended
region, with the same or a modified remainder term.

(a) Complex basis

The formulae (6.3.1a, b) are obtained by using paths of classes A 1, A 2 respectively, the
constant factors et}* having already been determined in deriving (1.9) and (1.10). A formula
for y,(z+m), not in a convenient form, can now be written down by substitution in (6.3.14):

yi(z+n) = et"F(z+ 1) exp [hE(z+7)] (1+7), (4.2)
which is valid on the half-strip
{z: —in < Rez < 0,Im z > 0},

and may be extended into a subdomain of £ by continuation across [0, z,) with the use of
paths of class A 3. ‘ N

On this half-strip let £, F be defined by continuation from £ across the same interval. Now
for any branch of £ on the half-strip it follows from (1.3) that

£ =+ £(z+ ) +const.,
and the sign and constant can be determined by comparing the values of £(z), £(z+ n) when
z € [0, z,). It can be seen from the form of the map z — £(z) (figure 3) that in fact
§(z+m) = £+2E;; (4.3)

also, from the definition of the function F (1.74), F(n) = F(0), both being real and positive,
whence F(z+n) = F(z). The formula

yi(z+ 1) = etireErF(2) ehé(1 + ), (4.4)
13-2
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valid on {z e Q: arg (§—£,) < —}n} with g given by (6.3.2), follows from (4.2) by means of
these substitutions.

(&) Connection coefficients

As z > }m+o0i with Re z = }n the following hold.
(i) It follows by the use of path B 1 that
D(z+7) = cBF(2) (141,

here by (3.2
where by (3.34) (sinh @)=t if A’ < —4h?

= h10(1
" ( )x{(sinh a)=® if —4h* < A < 282

the principal term being identical with that in (4.4);
(i) By (6.3.1a,b), y1(2) ~ €l"F(z) e, (4.5q)
yi(z—m) ~ e tF(z) e, (4.50)

By using II (4.1.2) and the method of IIT §4(a), (6.2.1) follows from (4.4), (4.54, ).

To derive formula (6.2.2), the path B 2 is used. It is necessary to construct the continuations
of &, F across [0, $n] into the half-strip {z: 0 < Re z < }=, Im z < 0}; the formula corre-
sponding to (4.3) is

E(n—z) = —E+2E,
and since arg F(in) = 0, F(n—2z) = F(z). The conclusion is that, as z—»> {n+ocoi with
Re z = 3,
y1(=2) = etie~2AEF (z) (1 +1),
where by (8.24), 7 = (kcosha)~10(1) = [A’]-* O(1). From this formula, together with
(4.5a, b), and from II, (4.1.4), it follows that

B = e-Hne—BhE(] 1 q,),
where 75 = (A)"F0(1).
Hence arg f = n+2hE+2nn+ (X)-2 0(1) (neZ); (4.6)

by similar methods, adapted to the different parameter range, this formula can be shown to
remain valid on the extended parameter range A’ < 0 (see §5.2).

It is now necessary to determine the value of n. There is a constant £ > 0 such that if
A" < —k, then |p,| < 1; it follows that the remainder term in (4.6) does not exceed 47 in
absolute value, whence by continuity, z is constant. Now if A = — 242, then ¢4(¢) < A < a4(q)
and 0 < arg f# < n (see part II, §§1(a, b), 3.3(b), 3.5); also by a property of E given in
§6.1, hE = (A’ +2h%) h~10(1), and this expression is £/~'0O(1) since A’ —A is bounded. Hence
in (4.6), n = 0.

At this stage it is necessary to appeal to lemma 1 from part V, §3.1(d). With (1.4) above
this shows that there is a constant & such that provided |A’|~* < £, the definitions and formulae
of part I, §4.2 are applicable and

e = [X]- 0(1). (4.7)
From this and II (4.2.2) it can be shown that under the same condition
arg f—20 = (X)~1 0(1);
(6.2.2) follows from this and (4.6).
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The formula (6.3.1¢), which is in effect a modification of (4.4), valid on a larger domain
but with the same remainder estimate (6.3.2), can now be obtained. By II (4.1.2),

y1(z+7) = 2 cosh (nu) y1(2) —y2(2— 7).

If |arg (£—£&)| < }n and if 2 cosh (mu) y,(z) is approximated by means of (6.3.1a), it can
be shown that the term y,(z—n) can be absorbed into the remainder term, whence (6.3.1¢)
is valid on this subdomain; likewise, if arg (§ —§,) < —}n, the discrepancy between (4.4)
and (6.3.1¢) can be absorbed into the remainder, so that the latter is valid with remainder
estimate (6.3.2) on the region {z € 2: arg ({ —£,) < }rn}. The domains of validity for (6.3.14, ¢)
given in §6 are smaller than those obtained here, but are adequate since they are comple-
mentary as subsets of £. One or other of these two, together with (6.3.154), always provides a
satisfactory basis.

IfRe z = m,y,(z) and y,(z — =) are complex conjugates; also, by (4.7), sech (mu) = (A)-10(1),
so that by using the same method, (6.3.1¢) is valid with the weaker estimate

7= ()~ o). (4.8)
(¢) Real bases
For the modified equation II (1.3a), the chosen basis comprises y,(ix) and the solution
Yo(ix) defined in II (4.2.2). If ¥ > 4, the formula (6.3.14) with z = ix gives a formula for
y,(1x). If 0 < x < a, the relation

91(ix) = (cosh mu)~* Re yy(ix —x),

obtained from II (4.1.2) and the symmetry properties of the differential equation, with (6.3.15),
gives
y1(ix) = (cosh mu)~1 F(z) Re {e-"e-h(1 +9)}, (4.9a)

the factor F(z) being real and positive. Now the remainder term in (6.2.1) does not exceed
in order of magnitude the least value of the estimate (6.3.2) for # on [0, a); hence the factor

(cosh mu)~! may be replaced by 2e~24#1, the effect being absorbed into the remainder term.
Similarly by IT (4.2.2), for all x > 0,

Y3(ix) = — (sinh np)~ Im y, (ix — =)
' = — (sinh mx)~1 Im {e-3"F(z) e~h(1 4 7))} (4.95)

Now by (4.7), coth (nx) = 14[A]-} O(1), whence it can be seen that, if x € [0, a) but not
otherwise, the factor (sinh mu)-! can also be replaced by 2e-%##1, The formulae (6.3.4) can
be obtained from (4.94, b) thus simplified, while the second of (6.3.3) follows from (4.95)
in its original form.

For the ordinary equations II, (1.2q, ) a basis is provided by the characteristic solutions;
II, (3.14) and II, (3.16) give, with z = x,

me ( +x) = + (sinh 2np)~! eF®{et sy, (2 + 1) — ¥y, (z — )}
By (6.3.15, ¢),

ety (z+ ) — ™y (2~ 1) = F(2) {2 cosh (mp) exmedinehé(1 +9,) — eFrredre(1 +7,)},

where 7,, 7, both satisfy estimate (6.3.2).
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By means of (4.7) it can be shown that on [0, ] the term with exponent + ng dominates by
a factor of the order of e™# at least, and that the smaller term can be absorbed into the remainder
of the larger term. The result is:

me (x) = (sinh 2mu)-! el®e™ cosh (nu) edi*F(z) eté(1+19),
me (—x) = (sinh 2np)~1 e et eHF(2) e~H(1 + 7).

The formulae (6.3.5) and (6.3.7) are now derived from these by means of (4.7) and (6.2.2),
the discrepancies being again absorbed into the remainder, which has estimate (6.3.6) ob-
tained from (6.3.2) by restriction to z € [0, }=].

The formula Me* (+x) = 2F(z) eth€-E)(1 + ),

where z = {n+ix and 9 = (hcosh a)=1 O(1) = [A']~ O(1), can be obtained similarly; here
(6.3.1¢) has remainder estimate (4.8) and this is the dominant contribution. From this
formula and II, (4.2.11), there follows (6.3.8).

Except for (6.3.8), formulae for even and odd functions are not included in §6; they may
be obtained by means of formulae given in II, §4 expressing them in terms of the appropriate
basis. Alternative formulae, which have the same principal term apart from a factor inde-
pendent of x or z but have a sharper remainder estimate under some conditions, can be derived
by using paths of class C 1 or C 2 as appropriate; they do not depend on any specific normal-
ization. A typical pair of formulae is

ce(2) = ce(0) [F(0)] F(2) cosh [(£—£(0))] (1 +1)
se(2) = se’ (0) F(0) k= F(2) sinh [A(£ — £(0))] (1-+1),

where # = hA~!var f ¥ (z) d£O(1), the variation satisfying (3.3a) on the region accessible by
paths of class C 1.

]
]

5. OTHER PARAMETER RANGES
5.1. The parameter range A' > 2h?

For this range, the differential equation has just one transition point in £, on its frontier at
zy = }m+ia, where a > 0 satisfies A’ —2h2 cosh 24 = 0; let £, again be the value of £(z,).
The calculations leading to the formulae of §2(¢) above require only minor modification,
principally the substitution of cos z for sin z; the formulae themselves, as well as the formulae
(2.1) and (2.8), do not require modification. The construction of progressive paths is based on
similar principles, though there are differences in detail, and the final formulae for the vari-
ation of the e.c.f., as given in §3, remain unchanged.

The types of path to which the various formulae are applicable are as follows:

Formula A. Paths which terminate at a point of £, and which:

(a) originate from +o0i, and are + &-progressive;

(b) originate from }mw+ocoi, and are — &-progressive, vahdlty being restricted to {z € 2:
arg (E— &) < 4n};

(¢) originate from —ooi, enter £2 across [0, 7], and are — -progressive, validity being re-
stricted to {z € Q: arg (§—§,) > $n}.

Formula B 1. A path which originates from m—o0i, is — §-progressive and terminates at
+001, with centre point z = =.
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Formula B 2. A path which originates from —o01i, is — §-progressive and terminates at co1i,
with centre point z = 0.

Formulae C. Paths which originate from z = 0 or z = ix, and terminate at a point of the
sub-domain {z € 2: arg (£—&,) > §n or $x respectively}.

The methods used to derive the various asymptotic formulae given in §6, both for solutions
and for connection formulae, are similar to the methods of §4. The two real auxiliary quantities

are now E=Im¢§ >0, E =—-£0) = £—£(4n) <O.

5.2. The parameter range —2h% < A’ < 2h?

The differential equation now has one transition point in 2, on its frontier at z, = a where
a € [0, in] and A’ + 2h% cos 2a = 0; let £, = £(z,) and let

E=Im§ >0, E, =-Re§, > 0.

The estimates of §2(¢) are again valid, but R, = 2 over the whole range. The derivation
when —2k% < A’ < 0 is a modification of that used for the case —4A% < A’ < —242, the
main difference being the substitution of circular for hyperbolic functions; when 0 < A" < 242,
the cosine function must be substituted for the sine function throughout. A formula corre-
sponding to (2.8) is

(sin 2a)¥1 [A(2)]#F if |4(2)| <
(E— &) = O(1) x{[4(z)]F* if $sin2a < |4(2)]
[4(2)]# if |4(2)] > 13

the essential difference from (2.8) lies in the expression } sin? 24, whose significance is that it
is of the order of } sin? ¢ if sin?a < }(A" < 0), but is of the order of § cos? a if sin2a > 1.

The description of the classes of path is the same as in §5.1 above, except that the frontiers
of the subdomains are different; for each subdomain the frontier is now defined by arg (§ — §,) =
$n. The formulae corresponding to those of §3 are:

FormMuLA A¥*

sin 2a[4(2)]-F if |4(z)| < }sin? 2q,
varfgﬁ(z) d§ = O(1) x1[4(2)]* if }sin22a < |4(2)| < 1, (5.1)
! [4(2)]7 if |4(2)] > 1.

FormMuLA B* B1: varf Y¥(z) d§ = (cos a)~2 O(1)
B1

B2: varf Y¥(z) d§ = (sina)~2 0(1).
B2
Formura C*

(i) For a path of class C 1,

sin z (sina)~® if 2zeR,,

virfl/f(z) dg = o) ><{(sin a)~? if |A(z)] > §sin22a and z ¢ R,;

(ii) For a path of class C 2, substitute cosine for sine and R, for R,. In each case the variation
satisfies the first of (5.1) if |4(z)| < } sin? 2a.

The asymptotic formulae for solutions and connection formulae are again derived by similar
methods.
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6. TABLES OF ASYMPTOTIC FORMULAE
6.1. Definitions
The quantity A’ is a redundant parameter which is required to satisfy
(A =A| <&,
A =2| < k|R2/X|,

where £ is arbitrary but fixed. In this section it is natural to take A’ = A, but in part V, §3.4,
relating to parabolic cylinder functions, A’ —A = {.

TaspLE 1. THE ELLIPTIC INTEGRALS F, E;

hRE hE,
a in
X< —2h? — f |A” 4 2h2 cosh 2x|¥dx f |A” 4 2h% cos 2x|¥dx
0 0
= — 2k sinh a tanh a D(tanh a) = 2h cosh a E(sech a)

= — 2k cosh a {K(tanh a) — E(tanh a)}
(a > 0 such that A’ = —2h2 cosh 2a)

a in
—2k* < X' < 2h? f (X’ + 22 cos 2x)}dx f |A”+ 2k cos 2x|}dx
0 0
= 2k sin? a B(sin a) 2h cos? a B(cos a)
= 2h{E(sin a) —cos? a K(sin a)} 2k {E(cos a) —sin? a K(cos a)}
(a € [0, $n] such that I’ = — 2A2 cos 2q)

I

in a
A= 2R? f\ (A’ 4 2h2 cos 2x)3dx - f (X" —2h? cosh 2x)}dx
0 0

= 2k cosh a E(sech a) = — 2k sinh ¢ tanh ¢ D(tanh q)
= — 2k cosh a {K(tanh ) — E(tanh a)}

(a > 0 such that A’ = 2hk2 cosh 2a)

With this preliminary, the following are defined:
(i) the fundamental region 2 = {z: 0 < Re z < 4=, Im z > 0},
(i1) A(z) = —Lh=2(A" 4+ 2h% cos 22) = sin? z—sin? z,,
where z, is the transition point (zero of 4(z)) which lies on the frontier of 2,
(i) F(2) = [44(2)]4,

regular on £2 except at z;, with arg F(z) = 0 when A4(z) is real and positive; finally,

(iv) £ is defined on 2 by
dé/dz = 2[4,

the branch and constant of integration being determined as follows. If Re z = ir, then
arg § = }n and if Re z = 0, then arg £ = =, both for all sufficiently large values of Im z; &
denotes the value of £ where A’ + 24% cos 2z = 0. The map z - £ is one-to-one on 2; it is illus-
trated in different cases in figures 3—5 (see the following subsections).
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The expression O(1) represents throughout a function of the relevant quantities which is
bounded under the conditions specified in each case; fuller remarks on the interpretation of
remainder terms appear in part I, §2(5). Definitions of the elliptic integrals E, E; and the
associated quantity ¢, with formulae in terms of the standard integrals K, E, B, D (Erdélyi
et al. 1953), are given in table 1; they are monotone functions of $A’/A% and in critical ranges

of this variable, E, E, have the following approximate representations.
(1) /R~ 1

E\(3X'/h?) = E(—3X'[h?) = in(k2+ 344 +...),
EQGN/R) = E(—3A'/R%) = 2{1—k*(} In [4/|k|]]+1) +o(k?)},
where £%2 = - A" /h2
(ii) $A'/h? > +o0:
E\(3)'/h?) = E(—4A’/h?) = —2sinh a tanh a {In (4 cosh a) —tanh2a+o0(1)},
E@3X /%) = E\(—3X'/h%) = m cosh a{1—}sech?a+ O(sech? a)}.

6.2. Auxiliary parameters
(a) The range X' < — 2h?

The following formulae and those of §6.3 below are based on the use of the definitions of
part I, §4.2; there is a constant £ such that this is justified if |A’| > &:

2 cosh (mp) = eEi(1+7y,), (6.2.1)
{lz’1 (sinh @)=2 0(1) if —4Ar2 < X' < —2R2
where N = ] .
h=1 (sinh @)t O(1) if A’ < —4h?%;
D = tn+hE+1n,, (6.2.2)
where 7y = (hcosh a)=1 O(1) = [A']-2 O(1).

(b) The range A’ > —2h?
The following formulae and those of §§6.4, 6.5 below are based on the use of the definitions
of part II, §4.3; there is a constant £ such that this is justified if either b > k or |A'| > k:
B = et Ba(14y), (6.2.3)

[RA(0)]- O(1) if X < 4k,

: -{
where "= hcosh ) 0(1) i A > are;
D = in+hE+7,, (6.2.4)

where

{[le(%n)]—l 0(1) if X' < 42,
* " Uhsinha)2 0(1) if A > 4r2

In certain cases, more refined formulae are given in part V, but with constraints on the
difference A’ — A.
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6.3. Solutions of the Mathieu equation, ' < — 2h?
(a) Complex variable: y" + (A +2h% cos 2z) y = 0
The following are valid on 2 = {z: 0 < Re z < }n, Im z > 0} or on a specified subregion:
y1(z) = et"F(z) e’(1+9) on {zeQ:Im (£—&) > 0}, (6.3.1a)
y1(z—mn) = eHF(z) e *(14+9) on 0, (6.3.1b)
yy(z+n) = 2et cosh (np) F(z) et(14+7) on {zeQ:Im (£—§&) < 0}, (6.3.1¢)

where in each case, uniformly,
sinh 24 [4(2)]-% if |4(2)] < TZsmh2
7 = h10(1) x{[4(z)]"* if }sinh?a < |4(2)] < (6.3.2)
[4(2)]* if |4(z)| > max {1, %smh2 a};

the second form only arises if A’ > —4A2. Figure 3 shows the subdomains in (6.3.14, ¢).

A

2 %

5

Dia L=—E, 0|

A 7 T 2

/ e — /

1 v
0 3T iEY,
77077 7 7777
2-plane &-plane

Ficure 3. The map z - §, A’ < —2A2.

(b) Modified equation, ¢ < 0:y” — (A+2h%cosh 2x) y = 0

With z = ix the following hold.
If x > a, then £ is real, £ < —F, and

ya(ix) = |F(2)] e"é(1+7), } (6.3.3)
ya(ix) = (sinh m) 1 [F(2)] e (1 +7).
If 0 < x < a, then F(z) and i(§+ E,) are both real and positive, and
y1(ix) = e *EiF(z) {cos [h|£ + Ey| — }n] + 7}, } (6.3.4)
ya(ix) = eMEF(z) {cos [h|£+ Ey| + 4] +7}. '
In each case, 7 satisfies (6.3.2).
(¢) Ordinary functions, ¢ < 0:y"+ (A+2h%2cos 2x) y = 0
With z = x the following hold on [0, i=]:
me (x) = 2F(2) e"6-19(1 49) } (6.3.5)
me (t—x) = e™ me (—x) = 2F(z) e PE-1E)(1 4 9), o
A(z)]t if |4 > 1,
where, uniformly, 7 = h~10(1) x {[ (2)] if | (Z)I (6.3.6)
[4(2)]* otherwise;

F(z) is real and positive while £ —iFE is real and less than or equal to zero.
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(d) Ordinary functions, ¢ > 0: y" + (A —2h% cos 2x) y =
With z = x+ }=, the following hold if |x| < }=:
me* (+x) = 2F(z) eth6—B)(1 49), (6.3.7)
where 7 satisfies (6.3.6).
(¢) Modified functions, ¢ > 0:y" — (A —2h2 cosh 2x) y = 0
With z = }n +ix, the following hold if x €[0, ir]:
Ce*(x) = 2F(z) {cos [h|£—iE|] +7},
Se*(x) = 2F(z) {sin [h|£—iE|] +9}, }

where # = (h cosh a)~! O(1), uniformly; F(z) is real and positive, while i£ + E is real and less
than or equal to zero.

(6.3.8)

Y,

AN

[}
[]
)
)
)
)
[]
'
+
[
A}
A}
\

& iE
% i

\
\

0 3T

//////// 7

AN NN
NN

z-plane &-plane
FiGure 4. The map z - §, —2k% < A’ < 2k2.

6.4. Solutions of the Mathieu equation, —2h% < X' < 2h?
(a) Complex variable: y” + (A +2h% cos 2z) y = O '

The following are valid on 2 = {2: 0 < Re z < }n,Im z > 0} oron a specified subregion:

y1(2) = el"F(z) eh(1+7), valid on Q, ' ‘ (6.4.14)
yi(z—m) = eMF(z) e(1+7) on {ze2:Imf > E}, (6.4.15)
91(—2) = BetF(z) e(149) on {zeQ:Im{ < E}, (6.4.1¢)

where in each case, uniformly,
sin 2a[4(z)]-% if |A4(z)] < §sin2 24, .
= h710(1) x{[4(2)]7* if }sin®2a < |4(z2)] < 1 (6.4.2)
[4(2)]F if |4(z)] > 1. :
Figure 4 shows the subdomains in (6.4.15, ¢).

() Modified equation, g < 0: y” — (A + 2h2 cosh 2x) y = 0
With z = ix the following holds.
Ifx > 0, then £ is real, £ < —E; and

y.(ix) = |[F(2)| eh£ (147), } (6.4.3)

yi(—ix) = BIF(2)] e (1 +7),
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where, uniformly,

A(z)]-F if |4 > 1,
7 = h-10(1) x {[ (217 il 4(2)] } (6.4.4)
[4(2)]7* otherwise.
(¢) Ordinary equation, ¢ < 0:y”"+ (A+2h%cos 2x) y = 0
With z = x the following hold.
If0 < x < a, then —i(£+ E,) is real and positive and
15 = CE o W~ 6l H 4t ) 6.4
ys(n—x) = f*eMA|F(z)| {cos [A|€ - &| + ¢ —in] +7},
where ¢ = @ —}n—hE (see (6.2.4) and V, §§3.4, 4.4 for D).
Ifa < x < im, then £— &, is real and positive and
I) = B el ) (6.4.6)
Ja(m—3) = HEF(2) eMEE(1 ).
In each case, uniformly, . .
7 = K10(1) x {sm 2a[A(z)]~ 1f" |4(2)] < % sin? 2a, (6.47)
[4(z)]7* otherwise.

(d) Ordinary equation, ¢ > 0:y"+ (A—2h%cos 2x) y = 0
Formulae for y,(3n + x) valid on [0, {n] are obtained by substituting 3n —x for x in (6.4.5),
(6.4.6).

(e) Modified equation, ¢ > 0:y" — (A —2h% cosh 2x) y = 0
Formulae (6.5.1) hold on x > 0, with # given by (6.4.4) and £, replaced by iE.

6.5. Solutions of the Mathieu equation, X' > 2h?
(a) Complex variable: y" + (A+2h% cos 22) y = 0

Formulae (6.4.14, b, ¢) are valid on £ or the specified subdomain, with % given by (6.3.2);
figure 5 shows these subdomains.

(b) Modified equation, ¢ < 0: y" — (A +2h% cosh 2x) y = 0
Formulae (6.4.3) hold.
(¢) Ordinary equations, ¢ < 0:y"+ (A+2h2cos 2x) y = 0
g>0:y"+(A—2h%cos2x)y = 0
Formulae (6.4.5) hold on [0, $n] with 5 given by (6.3.6) and £, replaced by iE - E,.

(d) Modified equation, ¢ > 0:y" — (A" —2h% cosh 2x) y = 0
With z = }rn +1ix in the following hold.
If x > a, then F(z) and —i(§— &,) are real and positive and

Ya(x) = F(2) {cos [A|§—&| +in—¢] +n}, }
v —x) = (B+1B]) F(2) {cos [h|~&| —in— @] +n},
where ¢ is defined under (6.4.5).

(6.5.1)
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If0 < x < a, £~ &, is real and positive and

Ya(x) = |F(2)] "-8(1 +7), }

(6.5.2)
Bl = %) = e WEIF(2)] M1 +7).

In each case, 7 is given by (6.3.2).

7, ““ ?
.
\\ 2
- E
N &=i )
‘:#%n+ia -------- 0o | ?
---------- ” — E
0 im OE _El%
z-plane -plane

Ficure 5. The map z - £, A’ > 242

RErFerRENCE (Part IV)
Erdélyi, A. et al. 1953 Higher transcendental functions, vol. II. New York: McGraw-Hill.


http://rsta.royalsocietypublishing.org/

